MTH 403: Real Analysis II

Practice Assignment III

Conceptual problems

1. Try Problems 4-13, 4-14, 4-18, and 4-19 (page 96) from Calculus on manifolds by M. Spivak.
2. Recalling your solution to Problem 3-41 (from Practice Assignment - II), try Problem 4-21 (page 97) from Calculus on manifolds by M. Spivak.
3. Try Problems 4-25, 4-28 and 4-33 (pages 104-105) from Calculus on manifolds by M. Spivak.

Integration on chains

1. If $\omega \in \Lambda^{n}(V)$ is the volume element determined by T and μ, and $w_{1}, \ldots, w_{n} \in V$, then show that

$$
\omega\left(w_{1}, \ldots, w_{n}\right)=\sqrt{\operatorname{det}\left(g_{i j}\right)},
$$

where $g_{i j}=T\left(w_{i}, w_{j}\right)$.
2. If $\omega \in \Lambda^{n}(V)$ is the volume element determined by T and μ, and $f: \mathbb{R}^{n} \rightarrow V$ is an isomorphism such that $f^{*} T=\langle$,$\rangle and \left[f\left(e_{1}\right), \ldots, f\left(e_{n}\right)\right]=\mu$, then show that $f^{*} \omega=\operatorname{det}$.
3. Show that every non-zero $\omega \in \Lambda^{n}(V)$ is the volume element determined by some inner product T and orientation μ for V.
4. If $w_{1}, \ldots, w_{n-1} \in \mathbb{R}^{n-1}$, then show that

$$
\left|w_{1} \times \ldots \times w_{n-1}\right|=\sqrt{\operatorname{det}\left(g_{i j}\right)},
$$

where $g_{i j}=\left\langle w_{i}, w_{j}\right\rangle$.
5. If $f: U \rightarrow \mathbb{R}^{n}$ be a differentiable function with a differentiable inverse $f^{-1}: f(U) \rightarrow \mathbb{R}^{n}$. If every closed form on U is exact, show that the same is true for $f(U)$.
6. For $R>0$ and $n \in \mathbb{Z}$, define a singular 1-cube $C_{R, n}:[0,1] \rightarrow \mathbb{R}^{2}-\{0\}$ by $C_{R, n}(t)=$ ($R \cos (2 \pi n t), R \sin (2 \pi n t))$. Then prove the following statements.
(a) There is a singular 2-cube $c:[0,1]^{2} \rightarrow \mathbb{R}^{2}-\{0\}$ such that $C_{R_{1}, n}-C_{R_{2}, n}=\partial c$.
(b) $\int_{C_{R, n}} d \theta=2 \pi n$ and that there exists no 2-chain c in $\mathbb{R}^{2}-\{0\}$ such that $C_{R, n}=\partial c$. [Hint: Use Stokes' Theorem.]
7. If c is a singular 1-cube in $\mathbb{R}^{2}-\{0\}$ with $c(0)=c(1)$, show that there is a unique integer n such that $c-c_{1, n}=\partial c^{2}$ for some 2-chain c^{2}. (The integer n is called the winding number of c around 0 .)
8. If ω is a 1 -form $f d x$ on $[0,1]$ with $f(0)=f(1)$, show that there exists a unique number λ such that $\omega-\lambda d x=d g$ for some g with $g(0)=g(1)$.
9. If ω is a 1 -form on $\mathbb{R}^{2}-\{0\}$ such that $d \omega=0$, prove that $\omega=\lambda d \theta+d g$, for some $\lambda \in \mathbb{R}$ and $g: \mathbb{R}^{2}-\{0\} \rightarrow \mathbb{R}$.

